Типы вероятностных выборок и их реализация
Страница 12

Информация » Построение выборки в социологическом исследовании » Типы вероятностных выборок и их реализация

Ориентировочное представление о типичных значениях р и их изменении для кластеров разной величины для общенационального выборочного исследования дает табл. 2. В таблице показаны величины р для имеющих разные размеры кластеров, составленных из соседних городских домовладений (квартир и домов). Данные таблицы основаны на выборке городского населения США (N> 100000).

Еще одной немаловажной практической проблемой в планировании кластерной либо стратифицированной выборки является сравнение эффективности затрат на исследование при разных среднем размере кластера и количестве кластеров (заметим, что и кластеры, и страты часто обозначают общим термином — «первичные единицы отбора»). Функция, описывающая зависимость расходов от вышеперечисленных двух переменных, выглядит так:

Сt = ас1 + пс2,

где Ct — общая стоимость исследования,

а — количество «первичных единиц отбора»,

с1 — средние затраты на обследование первичной единицы отбора, планируемые для данного исследования,

n — общий размер планируемой выборки,

с2 — средние затраты на проведение одного интервью.

Дальнейшим обобщением идей случайного отбора из субпопуляций и естественных группировок, лежащих в основе, соответственно стратифицированной и кластерной выборок, является многофазная (многоступенчатая) выборка. Построение такой выборки представляет собой довольно сложную статистическую задачу, подходы к решению которой мы рассмотрим лишь в самом обобщенном виде.

В простейшем случае многофазная выборка состоит из двух фаз случайного отбора. На первой — как при кластерном отборе — выбираются «первичные единицы отбора», например, районы, избирательные участки, предприятия. На второй фазе производится случайный отбор единичных членов генеральной совокупности — отдельных респондентов, семей и т. п. Так как «первичные единицы отбора» могут существенно отличаться по величине (как, например, отличаются друг от друга городские квартиры или дома с разной численностью проживающих), то результатом первой фазы может стать неравная вероятность попадания в выборку для членов генеральной совокупности, относящихся к разным «первичным единицам отбора». В этом случае исследователь имеет возможность выравнивания вероятностей на последующих фазах (например, из «первичной единицы отбора», где проживает 1000 семей, он выберет 10, а из «первичной единицы», где живет 500 семей, будет отобрано 20).

Рассмотрим многофазную процедуру на простейшем примере с равной вероятностью отбора.

Пусть нам необходимо осуществить выборку размером 2000 человек из генеральной совокупности населения крупного города, где проживает 4 млн. человек. Каждая «первичная единица отбора» — городской квартал — содержит 1000 единиц (т. е. отдельных респондентов). На первой фазе мы отберем из 100000 кварталов («первичных единиц отбора») 400, так что для каждого квартала вероятность попадания в выборку составит:

400:100000 = 0,004.

На следующей стадии из 1000 жителей каждого квартала мы отберем 50, так что для каждого респондента суммарная накопленная вероятность попадания в двухфазную выборку составит:

0,004 X (50:1000) = 0,0002.

Решение об использовании многофазной выборки обычно принимается после анализа «баланса» затрат и приобретений. Снижение затрат на сбор данных. достигаемое в этом случае, сопровождается увеличением сложности выборочной процедуры. С ростом числа фаз (в больших общенациональных обследованиях нередко используют 4 или 5 «ступенек» отбора — от области до квартала) точность получаемых оценок имеет тенденцию снижаться. Поэтому исследователям нередко приходится сочетать многофазный отбор со стратификацией на завершающих стадиях выборочной процедуры, что обычно ведет к улучшению характеристик выборки. Отсюда понятно, почему многофазная выборка в значительной мере остается «прерогативой» крупных исследовательских организаций, которые обладают значительными финансовыми ресурсами и могут воспользоваться услугами профессионалов-статистиков при проектировании выборки.

Страницы: 7 8 9 10 11 12 


Статьи по теме:

Рождаемость как демографический процесс
Рождаемость - процесс деторождения в совокупности людей, составляющих поколение, или в совокупности поколений - населении. Деторождения могут быть "живыми и мертвыми". В России статистический учет осуществляется по "живорож ...

Виды моделирования. Математическое, имитационное и компьютерное моделирование
Различают следующие виды моделирования концептуальное моделирование, при котором совокупность уже известных фактов или представлений относительно исследуемого объекта или системы истолковывается с помощью некоторых специальных знаков, си ...

Структура организаций
Социальная организация — одно из наиболее сложных общественных явлений, обладающее своей специфической структурой. Основной критерий структурирования социальных организаций — степень их формализации, соотношение формального и неформальног ...